TARTU OBSERVATORY space research centre

ESTCube-1 attitude determination and camera flight results

Tartu Conference on Space Science and Technology, 22.09.2014 <u>A. Slavinskis</u>, H. Kuuste, H. Ehrpais, I. Sünter, J. Viru, J. Kütt, E. Kulu, M. Noorma

INNISH METEOROLOGICAL INSTITUTE

Electric solar wind sail (E-sail)

- Propellantless propulsion system
- Charged long thin tethers
- Charged particles in the solar wind
- Invented by Pekka Janhunen (FMI) (will give a talk tomorrow)
- Record fast transportation in Solar System
- Enables new missions
- Has to be tested!

ESTCube-1 overview

- First E-sail in-orbit experiment
- 10-metre tether interacts with ionospheric plasma
- **T**ether experiment update tomorrow by Mart Noorma
- **Subsystems**
 - \Box Camera to image the end-mass
 - □ Attitude determination to measure the E-sail force and to provide attitude for control
 - □ Attitude control to spin up the satellite (next talk by Hendrik Ehrpais)
 - \Box Electrical power system
 - \square Command and data handling system
 - □ Communication system
 - □ Structure

The camera system

A year in space

- Launched with basic firmware
- **T**wo in-orbit firmware upgrades
 - □ Histogram based image evaluation
 - \square Power consumption from 120 mW to 75 mW
- Sensor temperatures over an orbit

Degradation of optics

Analysis of dark frames

A year in pictures

Mission objectives

European Student Earth Orbiter

TARTU OBSERVATORY space research centre

ESEO optical payload

- Earth imaging
- Two cameras for redundancy
- Carbon fiber and aluminium structure
- Baffles
- CAN interface
- Low power consumption
- Reliable and reusable design

Primary payload

- Slightly modified ESTCube-1 camera
 - □ Additional interfaces (CAN and SPI) to communicate with the satellite and the mass storage
 - \Box Same optics
 - Ground resolution 630 meters per pixel

Secondary payload

• A larger, upgraded version of the ESTCube-1 camera

- \square 50 mm lens and 5 megapixel sensor
 - Ground resolution 23 meters per pixel
- \square Additional SDRAM and mass storage

Filters and image sensor

Attitude determination system (ADC)

Requirement: attitude determination accuracy better than 2°

- Sensors: magnetometers, Sun sensors, gyroscopic sensors
- Unscented Kalman Filter
- Sensors calibrated in laboratory
- Recalibrated and tuned in orbit
 - \Box Intercompared
 - \Box Compared with geomagnetic and Sun models
 - □ Compared with Kalman filter's output
- Validated by comparing with attitude from images

ADS flow chart

ADS timeline

Validation of ADS

ADS uncertainty budget

Quantity	Uncertainty contribution	
Simulation-based uncertainty estimated by standard deviation	0.6°	
Earth precession uncertainty	0.15°	
Earth nutation uncertainty	0.1°	
Orbit propagator uncertainty	0.01°	
Sun direction model uncertainty	0.0015°	
Geomagnetic field model uncertainty	0.001°	
Combined standard uncertainty	0.63°	
Expanded uncertainty (95% confidence level, $k=2$)	1.26°	

Uncertainty budget of image-based attitude determination

Quantity	Uncertainty contribution		
Point selection uncertainty	0.37°		
Time uncertainty	0.21°		
Camera resolution uncertainty	0.04°		
Lens distortion uncertainty	0.02°		
Combined standard uncertainty	0.43°		
Expanded uncertainty (95% confidence level, $k=2$)	0.86°		

Comparison results

The expanded uncertainty of comparison (95% confidence level, k=2) is 1.52°

Sample	1	2	3	4	5	6	7	8
Difference, degree	0.31	0.63	1.26	0.7	1.16	1.32	1.43	0.17
Sample	9	10	11	12	13	14	15	
Difference, degree	1.14	0.45	0.78	0.32	0.18	0.31	0.42	

Conclusions

- One of the best CubeSat cameras
- **Fulfils mission requirements**
- Its heritage used to develop a camera for ESEO mission (scheduled to be ready on Q1 2015)
- ADS is calibrated, characterised and validated
- Uncertainty budget fulfils mission requirements
- Comparison results within uncertainty budget
- Its heritage used to develop an attitude and orbit control system for next E-sail test missions